mathematics

Department of physics level 2

م.د.زينب علي جعفر /محاضرات قسم الفيزياء /مرحلة الثانية

2023-2024

Chapter One

Sequence:-

A sequence is a function whose domain is the set of positive integer 1,2,3,... . We denote the sequence by $\langle f(n) \rangle$. Where f(n) is the function at valued *n*.

The sequence f is the set $\{(n, f(n)); n \in N\}$. That is ,the set of all pairs (n, f(n)), with n appositive integer. We also write a_n to denote the sequence whose ordinate at $y = a_n$.

Examples:-

• $<\frac{1}{2n}>=\frac{1}{2},\frac{1}{4},\frac{1}{6},\dots$

The set { $(n, \frac{1}{2n})$, $n = 1, 2, 3, \dots$ } is a sequence whose value at n is $\frac{1}{2n}$.

• $<\frac{1}{n+1}>=\frac{1}{2},\frac{1}{3},\frac{1}{4},\dots$

The set { $(n, \frac{1}{n+1})$, $n = 1, 2, 3, \dots$ } is a sequence whose value at n is $\frac{1}{n+1}$.

• <1>=1,1,1,.....

The set { (n, 1), $n = 1, 2, 3, \dots$ } is a sequence whose value at n is 1.

Finite sequence :-

The sequence $\langle f(n) \rangle$ is said to be finite if there exist two numbers *a* and *b* such that $a \leq f(n) \leq b$ or $a < f(n) \leq b$ or $a \leq$ f(n) < b or a < f(n) < b.

Note:- every finite sequence is bounded.

Infinite sequence:-

The sequence $\langle f(n) \rangle$ is said to be infinite if both *a* and *b* or one of them equal to $\pm \infty$.

Note:- every infinite sequence is unbounded.

Convergent Sequence:-

A sequence is said to be convergent if it approaches some limit .

Formally, a sequence S_n converges to the limit L. A divergent sequence doesn't have a limit. $\lim_{n\to\infty} S_n = L$

Discuss the following sequences:-

• $<\frac{1}{2n}>=\{\frac{1}{2},\frac{1}{4},\frac{1}{6},\dots\}$ $n \in N$

The set { $(1,\frac{1}{2}), (2,\frac{1}{4}), (3,\frac{1}{6}), \dots$ } is a finite and bounded sequence when

$$n \to \infty,$$
$$\lim_{n \to \infty} \frac{1}{2n} = 0$$

 $<\frac{1}{2n}> \rightarrow 0$ the sequence converge to zero.

$$0 < \frac{1}{2n} \le \frac{1}{2}$$

• $< \frac{1}{n+1} > = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, ...\}. n \in N$

The set { $(1,\frac{1}{2}), (2,\frac{1}{3}), (3,\frac{1}{4}), \dots$ } is a finite and bounded sequence when $n \to \infty$,

 $\lim_{n \to \infty} \frac{1}{n+1} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{n}{n+1}} = \frac{0}{1+0} = 0$

 $<\frac{1}{n+1}> \rightarrow 0$ the sequence is converge to zero.

$$0 < \frac{1}{n+1} \le \frac{1}{2}$$

• $< \mathbf{1} > = \{1, 1, 1, \dots\}.$

The set { (1,1), (2,1), (3,1),} is a finite and bounded sequence when $n \rightarrow \infty$,

 $\lim_{n \to \infty} 1 = 1$

 $< 1 > \rightarrow 1$ the sequence is converge to 1.

• $<\frac{2n+1}{2n}>=$ $\bigcirc \frac{3}{2}, \frac{5}{4}, \frac{7}{6}, \dots, \dots \oslash \bigcirc n \in N$

The set { $(1,\frac{3}{2}), (2,\frac{5}{4}), (3,\frac{7}{6}), \dots$ } is a finite and bounded sequence since when $n \to \infty$, there are two Solutions for this sequence:-

First solution:-

 $\lim_{n \to \infty} \frac{2n+1}{2n} = \lim_{n \to \infty} \frac{2n}{\frac{n}{2n} + \frac{1}{n}} = \lim_{n \to \infty} \frac{2 + \frac{1}{n}}{2} = \frac{2 + 0}{2} = 1$ $\therefore < \frac{2n+1}{2n} > \to 1$

Second solution:-

 $\lim_{n \to \infty} \frac{2n+1}{2n} = \lim_{n \to \infty} \frac{2n}{2} + \frac{1}{2n} = \lim_{n \to \infty} 1 + \frac{1}{2n} = 1 + 0 = 1$

$$\therefore < \frac{2n+1}{2n} > \rightarrow 1$$

The sequence is converge to 1.

$$1 < \frac{2n+1}{2n} \le \frac{3}{2}$$

• $< n > = \{1, 2, 3, \dots \}. n \in N$

The set { (1,1), (2,2), (3,3),} is a infinite and unbounded sequence when $n \to \infty$, $< n > \to \infty$. The sequence is diverged.

Note:- Those sequences are also infinite, unbounded and diverge $<\sqrt{n}>, <5n^2>, <\frac{n^3}{6}>, <\frac{n^6}{n^3}>$ And so on. Have a same solve like <n>.

Example:- Find the Domains for the following sequences

• $<\frac{1}{n-1}>$ n-1=0 n=1 $n \in N/\{1\}$ Or $n = \{2, 3, 4, \dots\}$ • $<\sqrt{n-4}>$ $n-4 \ge 0$ $n \ge 4$ $n \in N/\{1, 2, 3\}$

Or
$$n = \{4, t, 6, \dots\}$$

• $< \frac{1}{\sqrt{n+4}} >$
 $n \in N \text{ since } n+4 > 0 \rightarrow n > -4$
• $< \frac{1}{\sqrt{n-3}} >$
 $n-3 > 0$
 $n > 3$
 $n \in N/\{1, 2, 3\}$
Or $n = \{4, t, 6, \dots\}$.
• $< \frac{1}{\sqrt{3-n}} >$
 $3 - n > 0$
 $3 > n$
 $n = \{1, 2\}$.
• $< \sqrt{7 - n} > \text{How }?$

Are the sequences converging or diverge?

1.
$$<\frac{n-2}{n^2+1}>$$

Solution:-

$$\lim_{n \to \infty} \frac{n-2}{n^2+1} = \lim_{n \to \infty} \frac{n}{n^2} - \frac{2}{n^2} = \lim_{n \to \infty} \frac{1}{n} - \frac{2}{n^2} = \frac{0-0}{1+0} = 0$$

$$\therefore < \frac{n-2}{n^2+1} > \to 0$$

2. $< \frac{n^3+1}{n-2} >$
Sol.:- $\lim_{n \to \infty} \frac{n^3+1}{n-2} = \lim_{n \to \infty} \frac{n^3+\frac{1}{n^3}+\frac{1}{n^3}}{n^3-\frac{n^2}{n^3}} = \lim_{n \to \infty} \frac{1+\frac{1}{n^3}}{\frac{1}{n^2-\frac{n^2}{n^3}}} = \frac{1+0}{0-0} = \frac{1}{0} = \infty$

$$\therefore < \frac{n^3+1}{n-2} > \text{ The sequence is diverge.}$$

3. $< (-1)^n > n \in N$
Sol.:- $< (-1)^n > n \in N$
Sol.:- $< (-1)^n > n \in N$
Sol.:- $< (-1)^n > n = \{-1, 1, -1, 1, ...\}$
 $< (-1)^n > = \diamondsuit^{-1} n \text{ odd} \bigstar$
 $1 n \text{ even}$
 $< (-1)^n > = \diamondsuit^{(1, -1), (3, -1), (t, -1), ...} n \text{ odd}$
 $-1 \le (-1)^n > 1$ sbounded.
But $\lim_{n \to \infty} (-1)^n = \diamondsuit^{-1} n \to \infty \text{ odd}$
 $1 n \to \infty \text{ even}$

 $\therefore < (-1)^n >$ Is diverge because it has two limits.

Discuss the following sequences? (Homework)

4. $< (-1)^{n+1} >$ 5. $< (-1)^{n-1} >$ 6. $< 1 - (-1)^n >$

7.
$$<\frac{1}{(-1)^n} >$$

8. $< n - (-1)^n >$
9. $<\frac{n}{(-1)^n} >$
10. $<\frac{(-1)^n}{n} >$
11. $<< 5n + 4 >$
12. $<\frac{4}{3n} >$
13. $< 5\sqrt{n} >$
14. $<\frac{n}{n^3+3} >$

Find the values of a_1 , a_2 , a_3 and a_4 for the following sequence $\langle a_n \rangle$, were given a_n term ?

1

1.
$$a_n = \frac{1-n}{n^2}$$

 $a_1 = \frac{1-1}{1^2} = \frac{0}{1} = 0$
 $a_2 = \frac{1-2}{2^2} = \frac{-1}{4}$
 $a_3 = \frac{1-3}{3^2} = \frac{-2}{9}$
 $a_4 = \frac{1-4}{4^2} = \frac{-3}{16}$
2. $a_1 = \frac{(-1)^{n+1}}{2^{n-1}}$
 $a_1 = \frac{(-1)^{1+1}}{2^{1-1}} = \frac{(-1)^2}{2^0} = \frac{1}{1} = \frac{1}{2}$
 $a_2 = \frac{(-1)^{2+1}}{2^{2-1}} = \frac{(-1)^3}{2} = \frac{-1}{2}$

$$a_{2} = \frac{(-1)^{3+1}}{2^{3-1}} = \frac{(-1)^{4}}{2^{2}} = \frac{1}{4}$$

$$a_{4} = \frac{(-1)^{4+1}}{2^{4-1}} = \frac{(-1)^{5}}{2^{3}} = \frac{-1}{8}$$
3. $a_{n} = \frac{(-1)^{n+1}}{2n-1}$ Homework?
4. $a_{n} = (\frac{n+1}{2n})(1-\frac{1}{n})$ Homework?

Are the following sequence converge or diverge find the limited of each convergent sequence?

1. $a_n = 2 + (0.1)^n$ n = 1, 2, 3, $a_1 = 2.1, a_2 = 2.01, a_2 = 2.001,$ $n \to \infty, \lim_{n \to \infty} a_n = \lim_{n \to \infty} (2 + (0.1)^n)$ $n \to \infty$ $= \lim_{n \to \infty} (2 + \frac{1}{10^n})$ $n \to \infty$ $= 2 + \lim_{n \to \infty} \frac{1}{10^n} = 2 + 0 = 2$ $\therefore a_n \to 2$ $2 \le a_n \le 2.1$ $< a_n > \text{ is bounded.}$

2. $a_n = 1 + (0, 1)^n$? Homework

Not :- All of these sequence are diverge:- $\langle a_n \rangle = \frac{n}{10}$, $\langle a_n \rangle = (n-1)^2$ and $\langle a_n \rangle = (n+(-1)^n)$.

when $n \to \infty$ the limit sequences $\lim_{n \to \infty} a_n = \infty$

3. $\langle a_n \rangle = \frac{\cos n}{n}$ $-1 \leq \cos n \leq 1$ $\frac{-1}{n} \leq \frac{\cos n}{n} \leq \frac{1}{n}$ But $\langle \frac{-1}{n} \rangle \rightarrow 0$ and $\langle \frac{1}{n} \rangle \rightarrow 0$ $\therefore \langle \frac{\cos n}{n} \rangle \rightarrow 0$

By theorem if $a_n \le b_n \le c_n \forall n \text{ and } < a_n > \rightarrow L \text{ and } < c_n > \rightarrow$ L then $< b_n > \rightarrow L$.

But this sequence is diverge show that $\langle a_n \rangle = n + \cos n$? (Homework).

Mathematical Convergent for Sequence:-

A sequence S_n is said to be converge Mathematically for a real number *L* if and only if for every positive real number ($\epsilon > 0$), there exist corresponding number ($K \in N$), such that :

 $\langle S_n \rangle \rightarrow L \leftrightarrow |S_n - L| \langle \epsilon \rangle \quad \forall n > K.$

Example:- prove that

$$1. < \frac{1}{n} > \to 0$$

Proof:- $\mathbf{\Phi}_n^1 - 0 \mathbf{\Phi} < \epsilon$ $\forall n > K$

$$\begin{aligned} \left|\frac{1}{n}\right| &< \epsilon \quad \forall n > K \\ \frac{1}{n} &< \epsilon \quad \forall n > K \\ n &> \frac{1}{\epsilon} \quad \forall n > K \\ \therefore K = \frac{1}{\epsilon} \\ 2 \cdot &< \frac{1}{2^n} > \rightarrow 0 \\ \text{Proof:} \quad \oint_{\frac{1}{2^n}} - 0 &< \epsilon \quad \forall n > K \\ \left|\frac{1}{2^n}\right| &< \epsilon \quad \forall n > K \\ \frac{1}{2^n} &< \epsilon \quad \forall n > K \\ \frac{1}{2^n} &< \epsilon \quad \forall n > K \\ 2^n &> \frac{1}{\epsilon} \quad \forall n > K \\ \ln 2^n &> \ln \frac{1}{\epsilon} \\ n \ln 2 > \ln 1 - \ln \epsilon \end{aligned}$$

$$n > \frac{0 - \ln \epsilon}{\ln 2}$$
$$\therefore K = \frac{-\ln \epsilon}{\ln 2}.$$